• صفحه اصلی
  • مرور
    • شماره جاری
    • بر اساس شماره‌های نشریه
    • بر اساس نویسندگان
    • بر اساس موضوعات
    • نمایه نویسندگان
    • نمایه کلیدواژه ها
  • اطلاعات نشریه
    • درباره نشریه
    • اهداف و چشم انداز
    • اعضای هیات تحریریه
    • همکاران دفتر نشریه
    • اصول اخلاقی انتشار مقاله
    • بانک ها و نمایه نامه ها
    • پیوندهای مفید
    • پرسش‌های متداول
    • فرایند پذیرش مقالات
    • اخبار و اعلانات
  • راهنمای نویسندگان
  • ارسال مقاله
  • داوران
  • تماس با ما
 
  • ورود به سامانه ▼
    • ورود به سامانه
    • ثبت نام در سامانه
  • English
صفحه اصلی فهرست مقالات مشخصات مقاله
  • ذخیره رکوردها
  • |
  • نسخه قابل چاپ
  • |
  • توصیه به دوستان
  • |
  • ارجاع به این مقاله ارجاع به مقاله
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • اشتراک گذاری اشتراک گذاری
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
فصلنامه علمی - پژوهشی
مواد نوین
مقالات آماده انتشار
شماره جاری
شماره‌های پیشین نشریه
دوره دوره 9 (1397)
شماره شماره 34
شماره شماره 33
دوره دوره 8 (1396)
دوره دوره 7 (1395)
دوره دوره 6 (1394)
دوره دوره 5 (1393)
دوره دوره 4 (1392-1393)
دوره دوره 3 (1391)
دوره دوره 2 (1390)
دوره دوره 1 (1389)
ناصری پور, مریم, اعظمی, آزاده, حسن پور, احمد. (1397). رشد و بررسی خواص مغناطیسی و نوری نانوساختارهای هسته-پوسته مگنتیت@اکسیدمس. فصلنامه علمی - پژوهشی مواد نوین, 9(34), 155-164.
مریم ناصری پور; آزاده اعظمی; احمد حسن پور. "رشد و بررسی خواص مغناطیسی و نوری نانوساختارهای هسته-پوسته مگنتیت@اکسیدمس". فصلنامه علمی - پژوهشی مواد نوین, 9, 34, 1397, 155-164.
ناصری پور, مریم, اعظمی, آزاده, حسن پور, احمد. (1397). 'رشد و بررسی خواص مغناطیسی و نوری نانوساختارهای هسته-پوسته مگنتیت@اکسیدمس', فصلنامه علمی - پژوهشی مواد نوین, 9(34), pp. 155-164.
ناصری پور, مریم, اعظمی, آزاده, حسن پور, احمد. رشد و بررسی خواص مغناطیسی و نوری نانوساختارهای هسته-پوسته مگنتیت@اکسیدمس. فصلنامه علمی - پژوهشی مواد نوین, 1397; 9(34): 155-164.

رشد و بررسی خواص مغناطیسی و نوری نانوساختارهای هسته-پوسته مگنتیت@اکسیدمس

مقاله 12، دوره 9، شماره 34 - شماره پیاپی 2، زمستان 1397، صفحه 155-164  XML اصل مقاله (1315 K)
نوع مقاله: مقاله پژوهشی
نویسندگان
مریم ناصری پور؛ آزاده اعظمی ؛ احمد حسن پور
گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
چکیده
نانوساختارهای هسته-پوسته مگنتیت-اکسیدمس جهت کاربرد در فرایند تخریب فوتوکاتالیستی رنگدانه های شیمیایی با استفاده از روش های ساده شیمیایی رشد داده شدند. خواص ساختاری، مغناطیسی و نوری محصولات بدست آمده بترتیب با استفاده از مشخصه یابی های الگوی پراش، میکروسکوپ های الکترونی روبشی و عبوری، حلقه پسماند، طیف جذبی و نورتابناکی مورد مطالعه و بررسی قرار گرفت. الگوهای پراش تشکیل فازهای چندبلوری مگنتیت (مکعبی) و اکسیدمس (مونوکلینیک) را تایید کرده و تصاویر میکروسکوپ الکترونی تشکیل ساختارهایی در ابعاد نانو را با ریخت های کره و تسمه (کمربند) نشان نشان دادند. مطالعات مغناطیسی که توسط آنالیز حلقه پسماند صورت گرفت نشان دهنده کاهش خاصت مغناطیسی نانوساختارهای هسته-پوسته می باشد که علت آن را می توان ضعیف بودن خاصیت مغناطیسی اکسیدمس دانست. بررسی خواص نوری نانوساختارهای هسته-پوسته نیز حاکی از وجود لبه جذب آنها در ناحیه مرئی می باشد، که آنها را برای جذب نور خورشید و شرکت در فعالیت تخریب فوتوکاتالیستی مناسب می سازد. نمودار تائوک که جهت تخمین انرژی شکاف باند نوری آنها رسم شده بود نشان داد که ساختارهای هسته-پوسته دارای انرژی شکاف باند نوری بزرگتری نسبت به ساختارهای پوسته می باشند. طیف نورتابناکی نانوساختارهای هسته-پوسته نیز گسیل های نوری در نواحی مرئی و فرابنفش از طیف امواج الکترومغناطیسی را نشان می دهد.
کلیدواژه‌ها
نانوساختارهای هسته-پوسته؛ مگنتیت؛ اکسیدمس؛ تخریب فوتوکاتالیستی؛ خواص مغناطیسی و نوری
عنوان مقاله [English]
Growth and investigation of magnetic and optical properties of Fe3O4@CuO core-shell nanostructures
نویسندگان [English]
Maryam Nasseripour؛ Azadeh Aezami؛ Ahmad Hassanpour
Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
چکیده [English]
In this study, Fe3O4@CuO core-shell nanostructures were synthesized through simple chemical methods for using in degradation process of chemical dyes application. Structural, morphological, magnetic, and optical properties of the obtained product were studied by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), hysteresis loop, absorbance (UV-Vis), and photoluminescence (PL) spectra. The XRD patterns revealed the formation of multi-crystalline Fe3O4 (Cubic) and CuO (Monoclinic) phases. Electron microscopy images also show formation of structures in nano-dimension with spherical- and belt-like morphologies. Magnetic studies that carried out by hysteresis loop show decreases in magnetic properties of core-shell nanostructures which can be due to weak magnetic properties of CuO. Investigating optical properties of core-shell nanostructures demonstrated the existence of absorbance edge at a visible region that is proper for solar ray absorbance and participates in photocatalytic degradation activity. Tauc plot also show decreasing in optical energy band gap of core-shell compare to the shell nanostructures.
کلیدواژه‌ها [English]
Core-shell nanostructures, Fe3O4, CuO, Photocatalytic degradation, Magnetic and optical properties
مراجع
References:
[1] J. Ding, L. Liu, J. Xue, Z. Zhou, G. He, H. Chen, Low-temperature preparation of magnetically separable Fe3O4@CuO-RGO core-shell heterojunctions for high-performance removal of organic dye under visible light, Journal of Alloys and Compounds 688  (2016) 649-656.

[2] Q. Tian, J. Hu, Y. Zhu, R. Zou, Z. Chen, S. Yang, R. Li, Q. Su, Y. Han, X. Liu, Sub-10 nm Fe3O4@ Cu2–xS Core–Shell Nanoparticles for Dual-Modal Imaging and Photothermal Therapy, Journal of the American Chemical Society 135 (2013) 8571-8577.

[3] M. Martín, P. Salazar, R. Villalonga, S. Campuzano, J.M. Pingarrón, J.L. González-Mora, Preparation of core–shell Fe3O4@poly (dopamine) magnetic nanoparticles for biosensor construction, Journal of Materials Chemistry B 2 (2014) 739-746.

[4] T. Gulin-Sarfraz, J. Zhang, D. Desai, J. Teuho, J. Sarfraz, H. Jiang, C. Zhang, C. Sahlgren, M. Lindén, H. Gu, Combination of magnetic field and surface functionalization for reaching synergistic effects in cellular labeling by magnetic core–shell nanospheres, Biomaterials Science 2 (2014) 1750-1760.

[5] W.E.I. Zhang, M. Saliba, S.D. Stranks, Y. Sun, X. Shi, U. Wiesner, H.J. Snaith, Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles, Nano letters 13 (2013) 4505-4510.

[6] J. Croissant, D. Salles, M. Maynadier, O. Mongin, V. Hugues, M. Blanchard-Desce, X. Cattoën, M. Wong Chi Man, A. Gallud, M. Garcia, Mixed Periodic Mesoporous Organosilica Nanoparticles and Core–Shell Systems, Application to in Vitro Two-Photon Imaging, Therapy, and Drug Delivery, Chemistry of Materials 26 (2014) 7214-7220.

[7] Y.-F. Zhang, L.-G. Qiu, Y.-P. Yuan, Y.-J. Zhu, X. Jiang, J.-D. Xiao, Magnetic Fe3O4@ C/Cu and Fe3O4@CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light, Applied Catalysis B: Environmental 144 (2014) 863-869.

[8] R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles, Materials Science in Semiconductor Processing 32 (2015) 152-159.

[9] R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, L. Zaman, Synthesis and characterization of Pb-doped ZnO nanoparticles and their photocatalytic applications, Materials Research Innovations 20 (2016) 121-127.

[10] M. Nasseri, A. Aezami, A. Hassanpour,  1th national conference on applied research in science and engineering, Mashahd, Iran, 2017.

[11] P.D.F. ICDD, International Centre for Diffraction Data, Powder Diffraction File, Newtown Square, Pennsylvania, USA (1997).

]12[ ر. معمارزاده, س. جوادپور, ف. پناهی, بهینه سازی عوامل موثر بر اندازه نانو ذرات اکسید قلع به روش تاگوچی, فصلنامه علمی - پژوهشی مواد نوین 3 (2012) 11-20.

[13] H. Kafashan, F. Jamali-Sheini, M. Azizieh, Z. Balak, M. Cheraghizade, H.N. Vatan, Electrochemical deposition of nanostructured SnS1−xTex thin films and their surface characterization, Journal of Alloys and Compounds 694 (2017) 1338-1347.

[14] M. Yamaguchi, M. Tachikawa, M. Sugo, S. Kondo, Y. Itoh, Analysis for dislocation density reduction in selective area grown GaAs films on Si substrates, Applied Physics Letters 56 (1990) 27-29.

[15] R.J. Arsenault, N. Shi, Dislocation generation due to differences between the coefficients of thermal expansion, Materials Science and Engineering 81 (1986) 175-187.

[16] J. Chen, S.Z. Deng, N.S. Xu, W. Zhang, X. Wen, S. Yang, Temperature dependence of field emission from cupric oxide nanobelt films, Applied Physics Letters 83 (2003) 746-748.

[17] J. Chen, N.Y. Huang, S.Z. Deng, J.C. She, N.S. Xu, W. Zhang, X. Wen, S. Yang, Effects of light illumination on field emission from CuO nanobelt arrays, Applied Physics Letters 86 (2005) 151107.

[18] S. Hyun, T. Ko, K. Han, J.H. Oh, A wet-chemical preparation of a Fe3O4-CuO composite powder in core-shell structure, physica status solidi (c) 1 (2004) 3468-3471.

[19] F. Jamali-Sheini, R. Yousefi, N. Ali Bakr, M. Cheraghizade, M. Sookhakian, N.M. Huang, Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequencies, Materials Science in Semiconductor Processing 32 (2015) 172-178.

[20] S. Humaira, K.C. Kemp, C. Vimlesh, S.K. Kwang, Graphene–SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight, Nanotechnology 23 (2012) 355705.

[21] X. Zhao, P. Wang, Z. Yan, N. Ren, Room temperature photoluminescence properties of CuO nanowire arrays, Optical Materials 42 (2015) 544-547.

[22] K. Borgohain, N. Murase, S. Mahamuni, Synthesis and properties of Cu 2 O quantum particles, Journal of applied physics 92  (2002) 1292-1297.

[23] H.-J. Jeon, M.-K. Jeon, M. Kang, S.-G. Lee, Y.-L. Lee, Y.-K. Hong, B.-H. Choi, Synthesis and characterization of antimony-doped tin oxide (ATO) with nanometer-sized particles and their conductivities, Materials Letters 59 (2005) 1801-1810.

آمار
تعداد مشاهده مقاله: 37
تعداد دریافت فایل اصل مقاله: 22
صفحه اصلی | واژه نامه اختصاصی | اخبار و اعلانات | اهداف و چشم انداز | نقشه سایت
ابتدای صفحه ابتدای صفحه

Journal Management System. Designed by sinaweb.